Exercise Sheet 2

Problem 5:
Consider the feedback loop with the reference signal \(r \) and the input disturbance signal \(d_i \). The controller and plant transfer functions are

\[
C(s) = K \frac{s + 4}{s + 1} \quad G(s) = \frac{1}{s}
\]

a. Is the feedback loop internally stable for \(K = 1 \) and \(K = 14 \)?

b. Which steady-state output for reference steps do you expect for \(K = 1 \) and \(K = 14 \)?

c. Which steady-state output for the response to disturbance steps do you expect for \(K = 1 \) and \(K = 14 \)?

d. Simulate the reference step response and disturbance step response for \(K = 1 \) and \(K = 14 \) and verify the results in a. to c.

e. Now compare the controllers for \(K = 1 \) and \(K = 14 \). Which controller achieves better reference tracking/disturbance rejection?

Problem 6:
We perform a speed control experiment with a DC motor.

a. Download the Simulink model of the DC motor from the course webpage. The input signal is the supply voltage \(u \) and the output signal is the rotational velocity \(\omega \). In addition, there is a disturbance signal \(T_L \) which represents a load torque.

b. Perform step responses for \(u \) (1 V) and \(M_L \) (10\(^{-3}\) Nm) and plot the result. Use the parameter values in the following table \((J_a = J_L + J_M)\).

\[
\begin{array}{|c|c|c|c|c|}
\hline
J_L & J_M & R_a & L_a & \Phi_F \\
\hline
2 \cdot 10^{-6} \text{ kg m}^2 & 1 \cdot 10^{-6} \text{ kg m}^2 & 10 \Omega & 2 \text{ mH} & 0.05 \frac{Nm}{A} \\
\hline
\end{array}
\]

Put the DC motor plant model in a feedback loop. Choose \(C(s) = 1781 \cdot \frac{8.14 \cdot 10^{-4} s + 1}{s} \).

Observe the step response to a reference step \(r = 20 \text{ rad/sec} \) and a disturbance step of \(M_L \) (10\(^{-3}\) Nm).

c. Is the feedback loop internally stable?

d. Are the closed-loop poles complex or real? Justify your answer!